【数据挖掘】关联规则挖掘 Apriori 算法 ( 频繁项集 | 非频繁项集 | 强关联规则 | 弱关联规则 | 发现关联规则 )

参考博客 :





一、 频繁项集



项集 X \rm X X支持度 s u p p o r t ( X ) \rm support(X) support(X) , 大于等于 指定的 最小支持度阈值 m i n s u p \rm minsup minsup ,

则称该 项集 X \rm X X频繁项集 ,

又称为 频繁项目集 ;





二、 非频繁项集



项集 X \rm X X支持度 s u p p o r t ( X ) \rm support(X) support(X) , 小于 指定的 最小支持度阈值 m i n s u p \rm minsup minsup ,

则称该 项集 X \rm X X非频繁项集 ,

又称为 非频繁项目集 ;





三、 强关联规则



项集 X \rm X X频繁项集 的前提下 , ( 项集 X \rm X X支持度 s u p p o r t ( X ) \rm support(X) support(X) , 大于等于 指定的 最小支持度阈值 m i n s u p \rm minsup minsup ) ,

置信度 c o n f i d e n c e ( X ⇒ Y ) \rm confidence (X \Rightarrow Y) confidence(XY) 大于等于 置信度最小阈值 m i n c o n f \rm minconf minconf ,

称该 关联规则 X ⇒ Y X \Rightarrow Y XY强关联规则 ;





四、 弱关联规则



项集 X \rm X X频繁项集 的前提下 , ( 项集 X \rm X X支持度 s u p p o r t ( X ) \rm support(X) support(X) , 小于等于 指定的 最小支持度阈值 m i n s u p \rm minsup minsup ) ,

置信度 c o n f i d e n c e ( X ⇒ Y ) \rm confidence (X \Rightarrow Y) confidence(XY) 小于 置信度最小阈值 m i n c o n f \rm minconf minconf ,

称该 关联规则 X ⇒ Y X \Rightarrow Y XY弱关联规则 ;





五、 发现关联规则



发现关联规则 :

数据集 D \rm D D 中 , 发现 支持度 s u p p o r t \rm support support , 置信度 c o n f i d e n c e \rm confidence confidence , 大于等于给定 最小阈值强关联规则 ;

目的是 发现 强关联规则 ;

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页