【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则简介 | 数据集 与 事物 Transaction 概念 | 项 Item 概念 | 项集 Item Set | 频繁项集 | 示例解析 )





一、 关联规则挖掘简介



Apriori 算法 是 关联规则 挖掘算法 ,

关联规则 反映了 对象之间 相互依赖关系 ,

可以通过 一个对象 的行为或属性 预测 其它对象的行为或属性 ;


关联规则 不是 因果关系 , 有可能有因果关系 , 有可能没有 ;

如 : 购买商品时 , 啤酒 与 尿布 就有关联关系 , 这两个之间肯定没有因果关系 , 有一种未知的关联关系 ;


关联规则挖掘步骤 :

① 步骤一 : 找出 支持度 ≥ \geq 最小支持度阈值频繁项集 ;

② 步骤二 : 根据 频繁模式 生成 满足 可信度阈值关联规则 ;





二、 数据集 与 事物 ( Transaction ) 概念



数据集 与 事物 ( Transaction ) 概念 :

数据挖掘 数据集 事物 构成 ;

数据集 记做 D D D ;

使用事物表示 数据集 , 表示为 D = { t 1 , t 2 , ⋯   , t n } D = \{ t_1 , t_2 , \cdots , t_n \} D={t1,t2,,tn} ,

其中 t k ,   ( k = 1 , 2 , ⋯   , n ) t_k , \ ( k = 1, 2, \cdots, n ) tk, (k=1,2,,n) 称为事物 ;

每个事物可以使用 唯一的标识符 表示 事物编号 ( TID ) ;





三、项 ( Item ) 概念



项 ( Item ) 概念 :

每个 事物 ( Transaction ) 由多个 项 ( Item ) 组成 ;

项 记做 i i i ;

表示为 t k = { i 1 , i 2 , ⋯   , i n } t_k = \{ i_1 , i_2 , \cdots , i_n \} tk={i1,i2,,in} ;

数据集 D D D 是所有 项 i i i 的集合 是 I I I 集合 ;





四、项集 ( Item Set ) 概念



项集 ( Item Set ) 概念 :

I I I 中的 任意子集 X X X , 称为 数据集 D D D项集 ( Item Set ) ;

如果 项集 ( Item Set ) 中 项 ( Item ) 个数为 k k k ,

则称该 项集 ( Item Set ) 为 k k k 项集 ( k-itemset ) ;





五、频繁项集



频繁项集 : 频繁项集指的是出现次数较多的项集 ;





六、数据集、事物、项、项集合、项集 示例



事物编号事物 ( 商品 )
001 001 001奶粉 , 莴苣
002 002 002莴苣 , 尿布 , 啤酒 , 甜菜
003 003 003奶粉 , 尿布 , 啤酒 , 橙汁
004 004 004奶粉 , 莴苣 , 尿布 , 啤酒
005 005 005奶粉 , 莴苣 , 尿布 , 橙汁

整个 数据集 D D D , 由 5 5 5 个事物 构成 ;


数据集 : D = { t 1 , t 2 , t 3 , t 4 , t 5 } D = \{ t_1 , t_2 , t_3 , t_4, t_5 \} D={t1,t2,t3,t4,t5}


事物 1 1 1 : t 1 = { 奶 粉 , 莴 苣 } t_1 = \{ 奶粉 , 莴苣 \} t1={,}

事物 2 2 2 : t 2 = { 莴 苣 , 尿 布 , 啤 酒 , 甜 菜 } t_2 = \{ 莴苣 , 尿布 , 啤酒 , 甜菜 \} t2={,尿,,}

事物 3 3 3 : t 3 = { 奶 粉 , 尿 布 , 啤 酒 , 橙 汁 } t_3 = \{ 奶粉 , 尿布 , 啤酒 , 橙汁 \} t3={,尿,,}

事物 4 4 4 : t 4 = { 奶 粉 , 莴 苣 , 尿 布 , 啤 酒 } t_4 = \{ 奶粉 , 莴苣 , 尿布 , 啤酒 \} t4={,,尿,}

事物 5 5 5 : t 5 = { 奶 粉 , 莴 苣 , 尿 布 , 橙 汁 } t_5 = \{ 奶粉 , 莴苣 , 尿布 , 橙汁 \} t5={,,尿,}


上述 事物 集合中的元素 i i i 都称为项 , 奶 粉 , 莴 苣 , 尿 布 , 啤 酒 , 甜 菜 , 橙 汁 奶粉 , 莴苣 , 尿布 , 啤酒 , 甜菜 , 橙汁 ,,尿,,, 都是 项 ;


I = { 奶 粉 , 莴 苣 , 尿 布 , 啤 酒 , 甜 菜 , 橙 汁 } I = \{ 奶粉 , 莴苣 , 尿布 , 啤酒 , 甜菜 , 橙汁 \} I={,,尿,,,}


项集 : 任意不相同的项组成的集合就称为项集 , 上述 6 6 6 个元素的集合有 2 6 2^6 26 个项集 ; 参考集合幂集个数

{ 奶 粉 } \{ 奶粉 \} {} 1 1 1 项集 ;

{ 尿 布 , 啤 酒 } \{ 尿布 , 啤酒 \} {尿,} 2 2 2 项集 ;

{ 莴 苣 , 尿 布 , 啤 酒 } \{ 莴苣 , 尿布 , 啤酒 \} {,尿,} 3 3 3 项集 ;

{ 奶 粉 , 莴 苣 , 尿 布 , 啤 酒 } \{ 奶粉 , 莴苣 , 尿布 , 啤酒 \} {,,尿,} 4 4 4 项集 ;

{ 奶 粉 , 莴 苣 , 尿 布 , 啤 酒 , 甜 菜 } \{ 奶粉 , 莴苣 , 尿布 , 啤酒 , 甜菜 \} {,,尿,,} 5 5 5 项集 ;

{ 奶 粉 , 莴 苣 , 尿 布 , 啤 酒 , 甜 菜 , 橙 汁 } \{ 奶粉 , 莴苣 , 尿布 , 啤酒 , 甜菜 , 橙汁 \} {,,尿,,,} 6 6 6 项集 ;

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页