【RecyclerView】 三、RecyclerView 布局 ( 线性布局管理器 LinearLayoutManager ) 一、线性布局、1、线性布局管理器 LinearLayoutManager、2、垂直不翻转代码示例、3、水平翻转代码示例、二、完整代码示例、三、RecyclerView 相关资料、
【RecyclerView】二、RecyclerView 简介 ( RecyclerView 特点 | RecyclerView 涉及到的类 ) 一、RecyclerView 简介、二、RecyclerView 特点、三、RecyclerView 涉及到的类、四、RecyclerView 相关资料
【OpenGL】二十四、OpenGL 纹理贴图 ( 读取文件内容 | 桌面程序添加控制台窗口 | ‘fopen‘: This function may be unsafe 错误处理 ) 一、文件读取、二、报错处理 ( 'fopen': This function or variable may be unsafe. )、三、桌面程序添加控制台窗口、四、相关资源、
【OpenGL】二十二、OpenGL 光照效果 ( 模型准备 | 光照设置 | 启用光照 | 启用光源 | 设置光源位置 | 设置光照参数 | 设置环境光 | 设置反射材质 | 设置法线 ) 一、模型准备、二、光照设置、1、启用光照设置、2、启用光源、3、设置光照参数、4、设置环境光、5、设置反射材质、三、光照法线设置、1、设置光源位置、2、设置法线、3、代码示例及运行效果、四、相关资源、
【OpenGL】二十一、OpenGL 矩阵压栈与出栈 ( 不同类型矩阵变换先后顺序 | 渲染前不设置单位阵 | 压栈出栈原理分析 | 代码示例 ) 一、不同类型矩阵变换先后顺序、二、渲染前不设置单位阵、三、矩阵的压栈和出栈原理分析、四、矩阵的压栈和出栈代码示例、五、相关资源
【OpenGL】二十、OpenGL 矩阵变换 ( 矩阵缩放变换 | 矩阵旋转变换 | 矩阵平移变换 ) 一、绘制三角形、二、选中矩阵设置、三、矩阵缩放变换、四、矩阵旋转变换、五、矩阵平移变换、六、相关资源
【OpenGL】十五、OpenGL 绘制三角形 ( 绘制 GL_TRIANGLE_FAN 三角形扇 ) 一、绘制 GL_TRIANGLE_FAN 三角形、1、绘制 3 个点的情况、2、绘制 4 个点的情况、3、绘制 5 个点的情况、4、绘制 6 个点的情况、二、相关资源
【OpenGL】十四、OpenGL 绘制三角形 ( 绘制 GL_TRIANGLE_STRIP 三角形 | GL_TRIANGLE_STRIP 三角形绘制分析 ) 一、绘制 GL_TRIANGLE_STRIP 三角形、二、GL_TRIANGLE_STRIP 三角形绘制分析、三、相关资源
【OpenGL】十三、OpenGL 绘制三角形 ( 绘制单个三角形 | 三角形绘制顺序 | 绘制多个三角形 ) 一、绘制三角形、二、三角形绘制顺序、1、绘制正面、2、三个点逆时针方向排列、3、三个点顺时针方向排列、4、设置点的正面方向、三、绘制多个三角形、四、相关资源、
【OpenGL】十二、OpenGL 绘制线段 ( 绘制单条线段 | 绘制多条线段 | 依次连接的点组成的线 | 绘制圈 | 绘制彩色的线 ) 一、设置线宽度、二、绘制单条线段 GL_LINES、三、绘制多条线段 GL_LINES、四、绘制依次连接的点组成的线 GL_LINE_STRIP、五、绘制圈 GL_LINE_LOOP ( 偶数个点 )、六、绘制圈 GL_LINE_LOOP ( 奇数个点 )、七、绘制彩色的线、八、相关资源、
【OpenGL】十、OpenGL 绘制点 ( 初始化 OpenGL 矩阵 | 设置投影矩阵 | 设置模型视图矩阵 | 绘制点 | 清除缓冲区 | 设置当前颜色值 | 设置点大小 | 绘制点 ) 一、初始化 OpenGL 矩阵、1、设置投影矩阵、2、设置模型视图矩阵、二、绘制点、1、清除缓冲区、2、设置当前颜色值、3、设置绘制点的大小、4、绘制点、5、将缓冲区绘制到前台、三、部分代码示例、四、运行效果展示、五、相关资源
【OpenGL】八、初始化 OpenGL 渲染环境 ( 导入 OpenGL 头文件 | 链接 OpenGL 库 | 将窗口设置为 OpenGL 窗口 | 设置像素格式描述符 | 渲染绘制 ) ★ 一、导入 OpenGL 的两个头文件、二、链接 OpenGL 库、三、将 Windows 桌面窗口改成 OpenGL 窗口、四、获取窗口设备、五、设置像素格式描述符、六、设置像素格式、七、创建并设置 OpenGL 上下文对象、八、设置清除缓冲区背景颜色、九、OpenGL 上下文初始化操作代码示例、十、渲染场景、十一、相关资源
【OpenGL】七、桌面窗口搭建 ( 导入头文件 | 桌面程序入口函数 | 注册窗口 | 创建窗口 | 显示窗口 ) 一、导入头文件、二、桌面程序入口函数、三、注册窗口、四、创建窗口、五、显示窗口、六、完整代码示例、七、相关资源、
【OpenGL】三、Visual Studio 2019 配置 GitHub ( 将项目上传到 GitHub ) 一、将解决方案添加到源代码管理、二、首次将代码上传到 GitHub、三、GitHub 项目展示
【OpenGL】一、Visual Studio 2019 创建 Windows 桌面程序 ( Visual Studio Installer 安装 C++ 桌面开发库 | 创建桌面程序 ) 一、Visual Studio Installer 安装 C++ 桌面开发库、二、Visual Studio 2019 创建 Windows 桌面程序
【运筹学】匈牙利法 ( 匈牙利法示例 2 | 第一步 : 变换系数矩阵 | 第二步 : 试指派 | 行列打√ | 直线覆盖 | 第二轮试指派 ) 一、使用匈牙利法求解下面的指派问题、二、第一步 : 变换系数矩阵 ( 每行每列都出现 0 元素 )、三、第二步 : 试指派 ( 找独立 0 元素 )、四、第二步 : 试指派 ( 打 √ )、五、第二步 : 试指派 ( 直线覆盖 )、五、第二步 : 试指派 ( 第二轮 )
【运筹学】分支定界法 ( 分支定界法求整数规划示例 ) ★★ 一、分支定界法求整数规划示例、二、求整数规划的松弛问题及最优解、三、第一次分支操作、四、第二次分支操作、五、第三次分支操作、六、整数规划最优解
【运筹学】分支定界法 ( 分支定界法相关概念 | 分支定界法求解整数规划步骤 | 分支定界理论分析 | 分支过程示例 ) 一、分支定界法相关概念、二、分支定界法求解整数规划步骤、三、分支定界理论分析、四、分支过程示例
【运筹学】对偶理论 : 总结 ( 对偶理论 | 原问题与对偶问题对应关系 | 对偶理论的相关结论 ) ★★★ 一、对偶理论 、 1、对称性定理 、 2、弱对偶定理 、 3、最优性定理 、 4、强对偶性 、 5、互补松弛定理 、 二、原问题与对偶问题对应关系 、 二、对偶理论的相关结论 、 1、对偶问题存在 、 2、对偶问题转化 、 3、对偶问题的解 、 4、互补松弛定理
【运筹学】对偶理论 : 互补松弛定理应用 ( 原问题与对偶问题标准形式 | 已知原问题最优解求对偶问题最优解 | 使用单纯形法求解 | 使用互补松弛定理公式一求解 | 互补松弛定理公式二无效 ) ★★ 一、原问题与对偶问题标准形式、二、互补松弛定理、三、已知原问题最优解求对偶问题最优解、四、使用单纯形法求解、五、使用互补松弛定理公式一求解、六、使用互补松弛定理公式二求解 ( 无效方法 )、七、总结
【运筹学】对偶理论 : 对称理论示例 ( 对称理论 | 标准的原问题对偶问题 | 原问题目标函数求最小值示例 | 求对偶技巧 ) ★ 一、对称理论、二、对偶理论示例、三、对偶理论示例 2、四、求对偶技巧 ★★、
【运筹学】对偶理论 : 弱对偶性质 ( 弱对偶原理 | 弱对偶性 | 推论 1 | 推论 2 对偶问题的无界性 | 推论 3 ) 一、弱对偶性质、二、弱对偶定理分析、三、弱对偶定理推论 1、四、弱对偶定理推论 2 对偶问题的无界性、五、弱对偶定理推论 3
【CMake】Android Studio 中使用 CMake 编译单个 C++ 源文件 ( 常用的 CMake 命令解析 ) 一、Android Studio 中使用 CMake 编译单个 C++ 源文件、二、cmake_minimum_required 命令设置最小 CMake 版本、三、project 命令设置工程名称、四、add_library 命令设置生成函数库、五、find_library 命令设置查找函数库、六、target_link_libraries 命令设置链接函数库、七、CMakeLists.txt 详细中文注释、
【CMake】CMake 引入 ( Android Studio 创建 Native C++ 工程 | C/C++ 源码编译过程 | Makefile 工具 | CMake 引入 ) 一、在 Android Studio 中创建 Native C++ 工程、二、C/C++ 源码编译过程、三、Makefile 工具、四、CMake 引入
【鸿蒙 HarmonyOS】Ability 中使用 XML 布局文件 绘制布局及 UI 组件 一、创建 XML 布局文件、二、XML 布局文件中添加子组件、三、创建 Ability、四、配置 Ability、五、Ability 加载布局文件、六、完整代码及效果展示、四、GitHub 地址、
【数据挖掘】数据挖掘总结 ( 模式挖掘 | Apriori 算法 | 支持度 | 置信度 | 关联规则 ) ★★ 一、 支持度 置信度、 二、 频繁项集、 三、 非频繁项集、 四、 Apriori 算法过程、 五、模式挖掘示例、
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★ 一、 数据挖掘特点、二、 数据挖掘组件化思想、三、 朴素贝叶斯 与 贝叶斯信念网络、四、 决策树构造方法、五、 K-Means 算法优缺点、六、 DBSCAN 算法优缺点、七、 支持度 置信度、八、 频繁项集、九、 非频繁项集、十、 Apriori 算法过程
【CMake】CMake 引入 ( Android NDK 构建脚本 | CMake 命令手册 ) 一、Android NDK 构建脚本、二、CMake 构建脚本示例、三、CMake 命令手册、1、CMake 脚本命令、2、CMake 工程命令
【数据挖掘】数据挖掘总结 ( K-Means 聚类算法 | 二维数据的 K-Means 聚类 ) ★ 一、 K-Means 聚类算法流程、二、 二维数据的 K-Means 聚类、1、 第一次迭代、2、 第二次迭代、
【数据挖掘】数据挖掘总结 ( K-Means 聚类算法 | 一维数据的 K-Means 聚类 ) ★ 一、 K-Means 聚类算法流程、二、 一维数据的 K-Means 聚类、1、 第一次迭代、2、 第二次迭代、3、 第三次迭代、4、 第四次迭代
【鸿蒙 HarmonyOS】Ability 中使用纯代码绘制布局及 UI 组件 一、Ability 与 Slice 简介、二、Ability 中使用纯代码绘制布局及 UI 组件、三、Ability 中使用纯代码绘制布局及 UI 组件代码示例、四、GitHub 地址
【错误记录】Android NDK 错误排查记录 ( Could not get version from cmake.dir path ‘xxx\cmake\3.6.4111459‘. ) 一、 报错信息、二、 问题分析、三、 解决方案
【鸿蒙 HarmonyOS】UI 布局 ( 线性布局 DirectionalLayout ) 一、线性布局 DirectionalLayout、二、垂直线性布局 DirectionalLayout、三、水平线性布局 DirectionalLayout
【鸿蒙 HarmonyOS】UI 组件 ( 列表 ListContainer 组件 ) 一、布局中设置列表 ListContainer 组件、二、ListContainer 组件用法、三、完整代码示例、四、GitHub 地址、